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1. Introduction

We consider the following mixed 0–1 convex program (MICP):

minimize c • x
subject to gi(x) � 0, i = 1, . . . , m,

xj ∈ {0, 1} j = 1, . . . , p,
0 � xj � L j = p + 1, . . . , n,


 (1)

where c, x ∈ R
n, n � p, and gi(x) are convex functions. The notation c•x denotes

the inner product of vector c with x, hence the objective function in (1) is linear. We
assume that gi(x) � −L̂, for i = 1, . . . m, for all x in the continuous relaxation of
the feasible set of MICP. Here L and L̂ are some positive constants.

We do not loose generality by considering a linear objective because a prob-
lem with a nonlinear convex objective, g0(x), can be written in the form of (1)
by adding a variable x0 and the constraint g0(x) − x0 � 0, and minimizing x0.
The problem in the above form is quite general, since by adding a non-negative
multiple of

∑n
i=1(x

2
i − xi) to the objective and constraints a pure 0–1 nonlinear

integer program can be reformulated as a MICP. The problem is considered in this
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form by Stubbs and Mehrotra [15] so that cutting planes can be generated. The
boundedness assumption ensures that a convex reformulation of the cut generation
problem (discussed in subsequent sections) is possible.

For over a decade, branch-and-cut methods have proven to be an effective solu-
tion technique for solving many classes of mixed 0–1 linear programs. Recently,
the first such method for solving mixed 0–1 convex programs was developed by
Stubbs and Mehrotra [15]. This method can be viewed as an extension of the lift-
and-project cutting plane method of Balas et al.[2, 3]. This method generates cuts
by solving a projection problem over a disjunctive program that is written as a
convex program in a higher dimensional space. The linear cuts are defined from
supporting hyperplanes of the projection of this higher dimensional region onto
the original space.

The purpose of this paper is to develop a method for generating convex poly-
nomial cuts in the context of branch-and-cut algorithms. It is natural to study the
possibility of adding nonlinear cuts in the context of (1) since nonlinear constraints
are already present in the original problem, and one may expect that the projected
region in Stubbs and Mehrotra [15] is ‘more accurately’ represented by nonlinear
constraints in comparison with the region obtained by adding linear cuts. The
nonlinear cuts might also prove valuable for linear problems since tighter relax-
ations are possible by adding a semidefinite constraint on variables in a higher
dimensional relaxation (for theoretical and practical usefulness of semidefinite
constraints see Lovász and Schrijver [10], Balas et al. [4] for the maximum clique
problem, Goemans and Williamson [7] for the max-cut and max-2sat problems,
and Karger et al. [9] for graph coloring problems). To the best of our knowledge,
the method presented in this paper is the first known method for generating valid
convex nonlinear inequalities for mixed 0–1 programs.

This paper is organized as follows. In Section 2, we review the relaxations of
(1) studied in Stubbs and Mehrotra [15]. In Section 3, we develop our proced-
ure for generating valid convex quadratic cuts. The projection problem considered
for this purpose uses a differentiable convex function. In Section 4, we study the
implication of our procedure for the linear case. In this section we give methods
for finding quadratic and convex polynomial cuts using appropriately defined pro-
jection cones. In Section 5, we give sufficient conditions, under which projection
problem considered for generating convex quadratic cuts can be defined by using
non-differentiable convex functions. In Section 6 we extend our results of Section 3
to generate convex polynomial cuts for MICP.

1.1. NOTATION

A vector v ∈ R
n is taken to be a row vector, and its ith component is represented

by (v)i . This is not the same as vi . For example, (vi)j represents j th element of vi .
The only exception is the use of vector x, where xi represents its ith component.
The explicit use of ‘(.)’ while representing the ith component is needed to keep
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notation simple while considering hierarchy of relaxations. The ij th element of a
matrix Y is represented by Yij .

The notation Y 	 (
)0 represents a constraint requiring matrix Y to be sym-
metric positive (negative) semidefinite. The notation u • v is used to denote the
inner-product of vectors u and v. Also the notation E • Y is used to represent sum
of component-wise product of matrices E and Y , i.e., E • Y ≡∑n

i=1

∑n
j=1Eij Yij

for matrices E, Y ∈ R
n×n. E • Y can also be thought of as inner product of two

vectors generated by writing elements of E and Y in a vector form.
For vectors u and v of equal length, u ⊗ v represents a vector whose ith com-

ponent is (u)i(v)i . Also v�u represents a vector whose ith component is (v)i/(u)i .
Given square matrices R andE, byR⊗E we represent a matrix whose ij th element
is RijEij . By E � R we represent a matrix whose ij th element is Eij /Rij , where
Rij �= 0.

The set of feasible choices satisfying {d1, . . . , dn|∑n
k=1 dk = l, dk ∈ Z+,

k = 1, . . . , n.} is represented by �l .

2. Relaxations of MICP

Let

C =

x

∣∣∣∣∣∣
gi(x) � 0, i = 1, . . . , m,
0 � xj � 1, j = 1, . . . , p,
0 � xj � L, j = p + 1, . . . , n


 ,

be the feasible region of the continuous relaxation of (1). Let G(x) � 0 represent
the set of constraints giving C, and

C ≡ conv {x ∈ C | xi ∈ {0, 1} , for i = 1, . . . , p}

be the convex hull of the feasible set of MICP.

2.1. BACKGROUND

The following discussion on developing relaxations of the integer hull C for MICP
is based on Stubbs and Mehrotra [15]. The work in [15] was motivated from earlier
developments on disjunctive programming and linearlization techniques developed
by Balas [1], Balas et al. [2], and Sherali and Adams [12, 13]. The idea of using
a semidefinite inquality to describe a tighter relaxation is originally due to Lovász
and Schrijver [10].

For a binary variable xj , let

C0
j ≡

{
x ∈ C|xj = 0

}
, and C1

j ≡
{
x ∈ C| xj = 1

}
.
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The convex hull of sets C0
j and C1

j is given by

Mj(C) ≡

(x, u0

j , u
1
j , λ

0
j , λ

1
j

) ∣∣∣∣∣∣
x = λ0

ju
0
j + λ1

ju
1
j ,

λ0
j + λ1

j = 1, λ0
j � 0, λ1

j � 0,
u0
j ∈ C0

j , u
1
j ∈ C1

j


 ,

where we have introduced new variables u0
j , u

1
j ∈ R

n, and λ0
j , λ

1
j ∈ R. The

projection ofMj(C) onto the x−space is given by

Nj(C) ≡
{
x
∣∣(x, u0

j , u
1
j , λ

0
j , λ

1
j

) ∈ Mj(C)
}
.

Note that the equality constraints in Mj(C) are not linear, and therefore, the de-
scription of Mj(C) involves non-convex constraints. Stubbs and Mehrotra [15]
gave a convex reformulation of Mj(C). This is accomplised as follows. Let z =
λx, and define a new function qi(z, λ) : R

n+1 → R as follows. Let qi(z, λ) ≡
λgi(z/λ), if λ > 0 and qi(0, 0) ≡ 0, for λ = 0. Now define the set

C̃ ≡


(z, λ)

∣∣∣∣∣∣∣∣
qi(z, λ) � 0, i = 1, . . . , m
0 � zi � λ, i = 1, . . . , p
0 � zj � λL, j = p + 1, . . . , n
0 � λ � 1


 ≡ {(z, λ) |Q(G(z), λ) � 0 } .

(2)

Using the boundedness assumption it can be shown [15, Lemma 1] that qi(z, λ) in
(2) are convex over C̃. The constraints defining C̃ are represented byQ(G(z), λ) �
0. This notation emphasizes that the constraints in Q(.) � 0 are obtained from the
constraints in G(.) � 0 after a variable transformation. By letting v0

j = λ0
ju

0
j and

v1
j = λ1

ju
1
j ,Mj(C) is written as

M̃j (C) ≡
{(

x,

v0
j , v

1
j , λ

0
j , λ

1
j

) ∣∣∣∣ x = v0
j + v1

j , (v
0
j , λ

0
j ) ∈ C̃0

j , (v
1
j , λ

1
j ) ∈ C̃1

j ,

λ0
j + λ1

j = 1, λ0
j � 0, λ1

j � 0

}
,

(3)

where

C̃0
j ≡ {(z, λ) ∈ C̃|zj = 0}, C̃1

j ≡ {(z, λ) ∈ C̃|zj = λ}.
We can eliminate variables v0

j , λ
0
j , λ

1
j in (3) by using xj = (v1

j )j = λ1
j , v

0
j = x−v1

j ,
and λ0

j = 1− xj . As a consequence we have

M̄j (C) ≡
{
(x, v1

j )
∣∣Q(G(x − v1

j ), 1− xj ) � 0, Q(G(v1
j ), xj ) � 0, (v1

j )j = xj
}
.

(4)

Note that the constriants in Q(G(x − v1
j ), 1 − xj ) � 0 are from R

2n → R. It can
be shown that these constraints are convex inqualities. Note that the projection of



CONVEX INEQUALITIES FOR MIXED 0–1 PROGRAMS 315

M̄j (C) onto the x−space is also equal to Nj(C). More generally, the projection of
set

M̄(C) ≡



(x, v1

k , k = 1, . . . , p)

∣∣∣∣∣∣∣∣∣∣

Q(G(x − v1
j ), 1− xj ) � 0, j = 1, . . . , p

Q(G(v1
j
), xj ) � 0, j = 1, . . . , p

(v1
j )j = xj , j = 1, . . . , p

(v1
j
)i = (v1

i
)j , i = 1, . . . p, i < j = 2, . . . , p




onto the x-space, represented by N̄(C), is equal to ∩pj=1Nj(C) strengthened further
by the symmetry constraints.

We can strengthen this set further [15] by introducing a semidefinite inequality
VB − XB 	 0, where XB represents a p × p matrix whose st element is xsxt ,
s, t,= 1, . . . , p. VB is a p × p matrix whose st element is (v1

s )t , s, t = 1, . . . , p.
In particular, let

M̂(C) ≡


(x, v

1
k , k = 1, . . . , p)

∣∣∣∣∣∣∣∣
Q(G(x − v1

j ), 1− xj ) � 0, j = 1, . . . , p
Q(G(v1

j ), xj ) � 0, j = 1, . . . , p
(v1
j )j = xj , j = 1, . . . , p

VB −XB 	 0


 .

and

N̂(C) ≡
{
x | (x, v1

k , k = 1, . . . , p) ∈ M̂(C)
}
.

Then, C ⊆ N̂(C) [15, Theorem 7].
In our context of generating convex quadratic inequalities we find the use of

additional variables v1
j , j = p + 1, . . . , n and constraints Q(G(v1

j ), xj ) � 0, j =
p+ 1, . . . , n, convenient. Let X be a n× n symmetric matrix whose st element is
xsxt , s, t = 1, . . . , n, and V represent the n× n symmetric matrix whose j th row
is v1

j , and

M(C) ≡



(x, v1

k , k = 1, . . . , n)

∣∣∣∣∣∣∣∣∣∣∣∣

Q(G(x − v1
j
), 1− xj ) � 0, j = 1, . . . , p

Q(G(v1
j ), xj ) � 0, j = 1, . . . , p

(v1
j
)j = xj , j = 1, . . . , p

Q(v1
j , xj ) � 0, j = p + 1, . . . , n

V −X 	 0



. (5)

The following Lemma show that the projection of M(C) onto the x-space is con-
tained in N̂(C), and that it provides a valid relaxation of C.

LEMMA 2.1. Let

N(C) ≡ {x ∣∣ (x, v1
k , k = 1, . . . , p) ∈ M(C)} ,

then C ⊆ N(C) ⊆ N̂(C).
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Proof. For any feasible solution x̂ of MICP by taking v̂1
j = x̂j x̂, j = 1, . . . , n

and (v̂1
j )j = x̂j , j = 1, . . . , p we can verify that (x̂, v̂1

k , k = 1, . . . , p) ∈ M(C).
Hence x̂ ∈ N(C). Since C is the convex hull of all feasible solutions of MICP, and
N(C) is a convex set, we must have C ⊆ N(C). Now we show thatN(C) ⊆ N̂(C).
Let X̂ and V̂ be X and V evaluated at (x̂, v̂1

k , k = 1, . . . , n), and (x̂, v̂1
k , k =

1, . . . , n) ∈ M(C). Then (x̂, v̂1
k , k = 1, . . . , p) ∈ M̂(C), since VB − XB 	 0 is

satisfied because V −X 	 0, and all other constraints defining M̂(C) are a subset
of constraints defining M(C). Hence N(C) ⊆ N̂(C) �

Let N0(C) = C, N1(C) ≡ N(C), and Nt(C) ≡ N(Nt−1(C)), for t � 2.
Note that the set Nt(C) is obtained by applying the N(·) operator to Nt−1(C). The
following theorem and its proof is similar to [15, Theorem 6,7]. It shows that if the
operator N(.) is applied p times we get the integer hull C.

THEOREM 2.2. The following properties of Nt(C) hold for t = 1, . . . , p:
1. Nt(C) is a convex set,
2. Nt(C) ⊆ Nt−1(C), C ⊆ Nt(C),
3. Np(C) = C. �

In fact, a similar theorem [15, Theorem 1] is true for the weaker operator Njp(Njp−1

(. . . Nj1(C))), where j1, . . . jp is any permutation of the index set 1, . . . , p.
Stubbs and Mehrotra [15] used the above results to develop a branch-and-cut

method for MICP. In this method at some node of the branch and bound tree, linear
cuts are generated. We explain the linear cut generation procedure. Let x̄ be an
optimal extreme point solution of the current continuous relaxation of MICP. By
current continuous relaxation we mean the continuous relaxation of the feasible
region of (1) to which the cuts generated thus far are added. Without loss of gen-
erality represent this set by C. To understand how a linear cut is generated, first
consider the projection problem

min
x∈T (x)

‖x − x̄‖, (6)

where T (x) can be N̄(C), N̂(C), N(C), or more generally, Nt(C), and ‖.‖ is any
vector norm function. Let x∗ be an optimal solution of (6). An appropriate sub-
gradient of the objective function of (6) at x∗ can be used to get a valid inequality
for the set T (x).

Obviously T (x) is not known to us. However, we know that it is a projection of
some set S(x, y) in a higher dimensional space whose representation is explicitly
known. Therefore, we consider the problem

min
(x,y)∈S(x,y)

‖x − x̄‖, (7)

instead of (6). Here the set S(x, y) can be M̄(C), M̂(C), M(C), or more gener-
ally, Mt(C). An appropriate subgradient of the objective function in (7) can be
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used to generate a valid inequality for S(x, y), which because of the form of the
subgradient (only x variables appear in the objective function) remains valid for
T (x).

2.2. MOTIVATION FOR GENERATING NONLINEAR CUTS: AN EXAMPLE

The following example demonstrates the value of using nonlinear cuts, and it
explains some of the notation introduced earlier. Consider the problem:

maximize x1 + 1.1x2 + 1.2x3

subject to (x1 + x2 − 0.5)2 + (x2 + x3 − 0.5)2 + (x3 + x1 − 0.5)2 � 0.75
xj ∈ {0, 1}, j = 1, . . . , 3,




(8)

It is easy to verify that the optimal solution of (8) is (0, 0, 1).
A solution to the continuous relaxation of (8) is ≈ (0.407, 0.497, 0.586) with

the optimal objective value ≈ 1.659. The sets C0
1 and C1

1 are given by

{x|x1 = 0, 0 � x2 � 1, 0 � x3 � 1, (x2 − 0.5)2 + (x2 + x3 − 0.5)2

+ (x3 − 0.5)2 � 0.75}
and

{x|x1 = 1, 0 � x2 � 1, 0 � x3 � 1, (x2 + 0.5)2 + (x2 + x3 − 0.5)2

+ (x3 + 0.5)2 � 0.75},
respectively. These are same as

C0
1 =

{
x|x1 = 0, (x2 + x3 − 0.5)2 � 0.25

}
,

C1
1 = {x|x1 = 1, x2 = 0, x3 = 0} .

The convex hull of sets C0
1 and C1

1 is given by:{
(x1, x2, x3)

∣∣∣∣ x1 = 1− λ, x2 = λ(u0
1)2, x3 = λ(u0

1)3,

0 � λ � 1, ((u0
1)2 + (u0

1)3 − 0.5)2 � 0.25

}
,

which after variable transformation can be rewritten as:{
(x1, x2, x3)

∣∣∣∣ (x2 + x3 − (1− x1)/2)2 � (1− x1)/4,
0 � x2 � 1− x1, 0 � x3 � 1− x1

}
.

Note that in our example we are able to write the convex hull explicitly in the
space of (x1, x2, x3). This is not possible in general. Similarly, we can also write
the convex hull conv(C0

2 , C
1
2 ) and conv(C0

3 , C
1
3) as{

(x1, x2, x3)

∣∣∣∣ (x1 + x3 − (1− x2)/2)2 � (1− x2)/4,
0 � x1 � 1− x2, 0 � x3 � 1− x2

}
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and {
(x1, x2, x3)

∣∣∣∣ (x1 + x2 − (1− x3)/2)2 � (1− x3)/4,
0 � x1 � 1− x3, 0 � x2 � 1− x3

}
,

respectively. The set N̄(C) is the intersection of sets conv(C0
1 , C

1
1), conv(C0

2 , C
1
2),

and conv(C0
3 , C

1
3).

When we minimize our objective function over N̄(C), we obtain the optimal
solution (0, 0, 1). The most important inequalities in describing conv(C0

j , C
1
j ), j =

1, 2, 3 are the nonlinear inequalities. Clearly, in the above example such a compact
description of conv(C0

j , C
1
j ), j = 1, 2, 3 is not possible using linear inequalities

only.
In the above example nonlinear cuts are generated directly by considering the

convex hull, and not from solving the projection problem. As mentioned earlier, in
general it will not be possible to generate this convex hull directly. In fact, in prac-
tice while solving a mixed integer program we do not generate the convex hull. We
only generate inequalities that describe this region selectively. In the subsequent
sections we give a technique for generating such inequalities.

3. Convex quadratic cuts for MICP

In this section we develop a method for generating valid convex quadratic inequal-
ities. This is accomplished by coming up with an appropriate projection problem.
For this purpose by Vij represent the variable (vi)j , which is also the ij th element of
matrix V . We introduce a new set of variables ϒij , i, j = 1, . . . , n, corresponding
to variables Vij in (5), and consider the problem:

minimize h(x, V,ϒ) ≡ 1
2

∑n
i=1(xi − x̄i )2 + 1

2

∑n
i=1

∑n
j=1(Vij − x̄i x̄j −ϒij )2

subject to (x, Vij , i, j = 1, . . . , n) ∈ M(C)
ϒ ≡ [ϒij ] 	 0.



(9)

In problem (9) the constraint ϒ 	 0 ensures that the solution of (9) can be used
to generate a convex constraint (see below). Let X̄ represent X evaluated at x̄. The
second part of the objective function in (9) is 1/2 the square of the Frobenius norm
of the matrix V − X̄ −ϒ , i.e., ‖V − X̄ − ϒ‖F ≡∑n

i=1

∑n
j=1(Vij − X̄ij −ϒij )2.

The gradient of the objective function in (9) is given by

(∇h(x, V,ϒ))xj = (x − x̄)j j = 1, . . . , n,
(∇h(x, V,ϒ))Vij = (Vij − X̄ij −ϒij ), i, j = 1, . . . , n,
(∇h(x, V,ϒ))ϒij = −(Vij − X̄ij −ϒij ), i, j = 1, . . . , n.

Let (x∗, V ∗, ϒ∗) be an optimal solution of (9). The gradient of the objective func-
tion at this solution is written as (ξ ∗, E∗,−E∗), where ξ ∗ = (x∗ − x̄), and E∗ ≡
V ∗ − X̄ −ϒ∗.
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LEMMA 3.1. The matrix E∗ is a symmetric negative semidefinite matrix. Fur-
thermore, if x̄ �∈ N(C), then the optimal objective value of (9) is positive.

Proof. Since V, X̄ andϒ are symmetric matrices, E∗ is also a symmetric matrix.
Hence, there exists an orthogonal matrix Q such that QTE∗Q = . ≡ diag(.1,

. . . .n), where .1, . . . .n are the eigenvalues of E∗ [8, p. 268, Theorem 8.1-1].
The orthogonality of Q implies that E∗ = Q.QT . Assume, without loss of gen-
erality, that the first k � n eigen values of E∗ are positive, i.e., .1, . . . ,.k � 0.
Now take ϒ̂ = ϒ∗ + Q.̂QT , where .̂ = diag(.1, . . . .k, 0, . . . 0). Clearly,
(x∗, V ∗, ϒ̂) is a feasible solution for (9). Let Ê = V ∗ − X̄ − ϒ̂. Since ‖Ê‖2

F =
‖Q[. − .̂]QT ‖2

F =
∑n
i=k+1.

2
i <

∑n
i=1.

2
i = ‖QT.∗Q‖2

F = ‖E∗‖2
F , we have

a contradiction with the assumption that (x∗, V ∗, ϒ∗) is optimal.
Since x̄ �∈ N(C) we do not have a V so that (x̄, V ) ∈ M(C). Therefore, for any

value of ϒ , (x̄, X̄ + ϒ) �∈ M(C). Hence, the objective value of (9) is positive. �
We note that if x̄ is an extreme point optimal solution of the current continuous
relaxation of MICP, then x̄ �∈ N(C). The inequality

ξ ∗ • x + E∗ • (V −ϒ) � ξ ∗ • x∗ + E∗ • (V ∗ − ϒ∗)
is a valid inequality because (9) is convex program with differentiable objective
function [5, Theorem 3.4.3]. Furthermore,

ξ ∗ • x + E∗ • V � ξ ∗ • x∗ + E∗ • (V ∗ −ϒ∗) (10)

is also valid for (9) because for every feasible (x, V ,ϒ), (x, V , 0) is also feasible.
The above inequality is now used to generate a valid convex quadratic inequality
in the space of x−variables only.

THEOREM 3.2. Let x̄ �∈ N(C), and E∗ be defined as in Lemma 3.1 at an optimal
solution (x∗, V ∗, ϒ∗) of (9). Then,

ξ ∗ • x + E∗ •X � ξ ∗ • x∗ + E∗ • (V ∗ −ϒ∗) (11)

is a valid convex quadratic inequality that cuts away x̄.
Proof. If (11) is not valid then for some feasible solution x̂ of MICP,

ξ ∗ • x̂ + E∗ • X̂ < ξ ∗ • x∗ + E∗ • (V ∗ −ϒ∗),

where X̂ is X evaluated at x̂. Since, (x̂, v̂1
j = x̂j x̂, j = 1, . . . , n) ∈ M(C), it

means that the inequality (10) is not valid for M(C), which is a contradiction.
Now we show that (11) cuts away x̄. Note that

ξ ∗ • (x̄ − x∗)+ E∗ • X̄ = −ξ ∗ • ξ ∗ + E∗ • X̄ = −ξ ∗ • ξ ∗
+ E∗ • (V ∗ −ϒ∗ − E∗) < E∗ • (V ∗ −ϒ∗),

where the last inequality follows by observing that the optimal objective value of
(9) is given by ξ ∗ • ξ ∗ +E∗ •E∗, and from Lemma 3.1 it is positive. The convexity
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of (11) follows because the Hessian matrix of the function defining this constraint
is 2E∗, which is negative semidefinite from Lemma 3.1. �

4. Nonlinear cuts for linear problems

In this section, we study a method for generating convex cuts for mixed bin-
ary linear problems. We do this for two reasons. First, it would help the reader
to motivate our developments in Sections 3, 5 and 6 from the known linear cut
generation techniques in the lift-and-project method of Balas et al. [2] and the
reformulation-linearization technique of Sherali and Adams [12, 13]. The second
reason is algorithmic. Lovász and Schrijver [10] state that including a semidefinite
constraint may provide better approximations to the integer hull of a polytope.
This is shown to be true for several structured combinatorial problems [7, 9, 11].
The projection N(C) of the convex regions in higher dimensional space defined by
including semidefinite constraint M(C) is not necessarily a polytope. Therefore, it
seems natural to consider representing N(C) by using convex nonlinear constraints
as well as linear constraints. Furthermore, considering the linear case has resulted
in additional insights for constructing alternative objective functions in the projec-
tion problem (9), as well as a methodology for generating convex polynomial cuts.
We develop methods for generating convex quadratic cuts in the next subsection.
This is generalized to convex polynomial cuts in Section 4.2.

4.1. CONVEX QUADRATIC CUTS FOR LINEAR PROBLEMS

Consider the problem

minimize c • x
subject to ai • x � bi, i = 1, . . . m,

xj ∈ {0, 1} , j = 1, . . . , p,
xj � 0, j = p + 1, . . . , n,


 (12)

and consider the set

K = {
x ∈ R

n|ai • x � bi, i = 1, . . . m, x � 0, xj � 1, j = 1, . . . , p
}
,

≡
{
x ∈ R

n|ãi • x � b̃i , i = 1, . . . m̄
}
, (13)

where m̄ = m+n+p. Sherali and Adams [12, 13] developed the following lifting
procedure that provides a strengthened relaxation of (12) in a higher dimensional
space. They multiply each of the constraint ãi • x � b̃i by xj and (1 − xj ) for
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j = 1, . . . , p to obtain the nonlinear system

(1− x1)(ã
i • x − b̃i ) � 0, i = 1, . . . m̄,

x1(ã
i • x − b̃i ) � 0, i = 1, . . . m̄,

...

(1− xp)(ãi • x − b̃i ) � 0, i = 1, . . . m̄,
xp(ã

i • x − b̃i ) � 0, i = 1, . . . m̄.




(14)

They substitute xj for x2
j , j = 1, . . . , p in (14). Next they linearize (14) by sub-

stituting a new variable yij for xixj = xjxi, i = 1, . . . , n, i < j = 2, . . . , n.
The projection of the polyhedron obtained in this way onto the x-space is equal to
N̄(K).

Let us represent the constraints resulting from (14) and subsequent linearization
by

ei + f i • x + gi • y � 0, i = 1, . . . , m̃,

where m̃ = 2pm̄. A valid inequality,
∑m̃
i=1 wi(e

i + f i • x) � 0, is obtained by
using the projection cone{

w

∣∣∣∣∣
m̃∑
i=1

wig
i = 0, w � 0

}
. (15)

In the context of generating cuts in a branch-and-cut method, Balas, Ceria, and
Cornuéjols [2] suggest several different optimization problems to determine w,
while using the projection cone for constraints obtained from multiplying with only
one of the variables (i.e., xj and (1 − xj ) for some j ) in (14). In the subsequent
discussion we develop these concepts further to generate convex quadratic cuts.
Consider the procedure described above until we substitute for x2

j = xj , however

do not linearize by replacing xixj with yij . Add constraints xj (ai •x− b̃i ) � 0, for
j = p + 1, . . . n, i = 1, . . . , m, and constraints −x2

j + xj � 0 for j = 1, . . . , p.
The resulting system is written as a set of quadratic inequalities of the form

ei + f i • x + 1

2
F i •X � 0, i = 1, . . . m̂, (16)

where F i are n×n symmetric matrices, and m̂ is the number of constraints obtained
in this way. The projection cone{

w

∣∣∣∣∣
m̂∑
i=1

wiF
i 
 0, w � 0

}

is used to generate a convex quadratic inequality

m̂∑
i=1

wi

(
ei + f i • x + 1

2
F i •X

)
� 0. (17)
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Note that valid linear inequalities are generated by requiring
∑m̂
i=1 wiF

i = 0 in the
above cone.

We can now write several different cut generation problems by using this pro-
jection cone to determine a proper choice of w. The following cut generation
problem is similar to the first normalization problem considered in Balas, Ceria,
and Cornuéjols [2]:

maximize −∑m̂
i=1wi(e

i + f i • x̄ + 1
2F

i • X̄)
subject to

∑m̂
i=1wiF

i 
 0,∑m̂
i=1wi = 1,

w � 0.




(18)

The objective in (18) tries to find a cut that is violated by x̄ by maximum amount.
We can also construct several alternative objectives measuring the quality of

a cut differently. The analogue of the cut generation problem in Balas et al. [2]
for which the 1-norm of the coefficients of the generated cut is bounded by one is
given below. This normalization (whose dual is the ∞−norm projection problem)
was found most effective by Balas et al. [2, 3] while generating linear cuts. This
cut generation problem is written as

maximize −
(∑m̂

i=1 e
iwi + (α+ − α−) • x̄ + (E+ − E−) • X̄

)
subject to

∑m̂
i=1wif

i − α+ + α− = 0,∑m̂
i=1wiF

i − E+ + E− 
 0,∑n
i=1(α

+)i +∑n
i=1(α

−)i +∑n
i=1

∑n
j=1([E+]ij + [E−]ij ) � 1

E+ − E− 
 0,
w � 0, α+ � 0, α− � 0, [E+]ij � 0, [E−]ij � 0, i, j = 1, . . . n.




(19)

Here α+, α− ∈ R
n, and E+, E− are n × n symmetric matrices of variables. Note

that an optimal solution of (18) or (19) gives a convex quadratic inequality from
(17).

It is interesting to see the relationship of (19) with the cut generation problem
discussed in Section 3. For this purpose consider the dual of (19):

minimize π

subject to ei + f i • x + F i • V � 0, i = 1, . . . , m̂,
−x̄i + xi − π � 0, i = 1, . . . , n
x̄i − xi − π � 0, i = 1, . . . , n[−x̄x̄T + V −ϒ]

ij
− π � 0, i, j = 1, . . . , n[

x̄x̄T − V + ϒ]
ij
− π � 0, i, j = 1, . . . , n

π � 0, V 	 0, ϒ 	 0.




(20)
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Problem (20) is written as the following ∞−norm projection problem:

minimize ‖x − x̄‖∞ + ∥∥V − X̄ − ϒ∥∥∞
subject to ei + f i • x + F i • V � 0 i = 1, . . . , m,

V 	 0, ϒ 	 0,


 (21)

where the norm in the second term of the objective function of (21) is written by
treating the matrix as a vector. The objective function in (21) suggested us the form
of objective function in (9). Note that we do not have the projection cone explicitly
available to us when considering MICP.

4.2. CONVEX POLYNOMIAL CUTS FOR LINEAR PROBLEMS

The reformulation-linearization described in the previous section is called level-1
relaxation by Sherali and Adams [12, 13]. Sherali and Adams [12, 13] consider a
hierarchy of relaxations indexed by d = 1, . . . , p leading up to the convex hull
representation at level-p. The relaxation at level d is constructed by multiplying
each of the equations in ãi • x � bi with all d-degree polynomial factors of the
form:∏

j∈J1

xj
∏
j∈J2

(1− xj ) for each J1, J2 ⊆ {1, . . . , p}, J1 ∩ J2 = ∅,

and |J1 ∪ J2| = d.
Note that there are Cpd 2d such factors. The reformulation-linearization technique
proceeds with substituting x2

j = xj , for j = 1, . . . , p, and linearizing the nonlinear
terms by a new variable for each of the nonlinear terms.

We consider the same procedure until we substitute for x2
j = xj , however we do

not linearize. Now add all convex polynomial constraints of degree d + 1 satisfied
by an x ∈ B

n. For example, constraints −(xj )k + xj � 0 for k = 2, . . . , d are
added. Also multiply each of the equations in ãi • x � bi with all d−degree
polynomial factors of the form:∏

j∈J3

xj for each J3 ⊆ {1, . . . , n}, and |J3| = d.

The resulting system is written as a set of d + 1-degree polynomial inequalities of
the form

P i(x) ≡
d+1∑
l=0

∑
{d1,... ,dn}∈�l


f id1d2...dn

n∏
j=1

x
dj
j


 � 0, i = 1, . . . , md. (22)

The second summation sign in (22) means that the sum is taken over all nonneg-
ative integer choices of d1, . . . , dn that satisfy

∑n
k=1 dk = l. f id1d2...dn

represents
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coefficients in the polynomial. The Hessian matrix of P i(x) is written as

Hi(x) ≡
d−1∑
l=0

∑
{d1,... ,dn}∈�l


 n∏
j=1

x
dj
j


F id1d2...dn

i = 1, . . . , md, (23)

where F id1...dn
are n×n symmetric matrices, whose coefficients are explicitly known

from the coefficients in (22). In particular, the matrix multiplied with
∏n
j=1 x

dj
j is

given by

[
F id1d2...dn

]
st
=
{
(ds + 1)(dt + 1)f id1...ds+1...dt+1...dn, s �= t,
(ds + 2)(ds + 1)f id1...ds+2...dn, s = t.

As in the quadratic case, we use a projection cone to generate a convex polyno-
mial inequality from the inequalities in (22). The following proposition gives such
a projection cone.

PROPOSITION 4.1. Let w satisfy{
w

∣∣∣∣∣
md∑
i=1

wiF
i
d1...dn


 0, w � 0, ∀{d1, . . . , dn} ∈ �l, l = 1, . . . , d − 1

}
.

Then, the inequality
∑md
i=1wiP

i(x) � 0 is a convex polynomial inequality over
R
n+.

Proof. The Hessian matrix of the polynomial
∑md
i=1wiP

i(x) is given by

H(x) ≡
md∑
i=1

wiH
i(x) =

d−1∑
l=0

∑
{d1,... ,dn}∈�l


 n∏
j=1

x
dj
j


 md∑

i=1

wiF
i
d1d2...dn

,

i = 1, . . . , md.

The product
∏n
j=1 x

dj
j is non-negative since x ∈ R

n+, and
∑md
i=1wiF

i
d1d2...dn


 0
from the definition of the projection cone. The result follows because the posit-
ive scalar product and the sum of negative semidefinite matrices gives a negative
semidefinite matrix. �

We can now write the generalizations of problems (18) and (19) for polynomial
cut generation. The analogue of problem (18) is:

maximize −∑md
i=1wiP

i(x̄)

subject to
∑md
i=1wiF

i
d1...dn


 0, ∀{d1, . . . , dn} ∈ �l, l = 0, . . . d − 1∑md
i=1wi = 1, w � 0.
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The analogue of problem (19) is:

max −
md∑
i=1

eiwi − (α+ − α−) • x̄ −
d+1∑
l=2

∑
{d1,... ,dn}∈�l

(
e+
d1...dn

− e−
d1...dn

) n∏
j=1

x̄
dj
j

s.t.
md∑
i=1

wif
i − α+ + α− = 0,

md∑
i=1

wiF
i
d1...dn

−Gd1...dn 
 0, ∀{d1, . . . , dn} ∈ �l, l = 1, . . . d − 1,

[Gd1...dn ]st=(ds+1)(dt+1)(e+
d1...ds+1...dt+1...dn

−e−
d1...ds+1...dt+1...dn

), s = 1, . . . , n,

t = s + 1, . . . , n, and ∀{d1, . . . , dn} ∈ �l, l = 0, . . . d − 1,
[Gd1...dn ]ss = (ds + 2)(ds + 1)(e+

d1...ds+2...dn
− e−

d1...ds+2...dn
),

s = 1, . . . , n, and ∀{d1, . . . , dn} ∈ �l, l = 0, . . . , d − 1
n∑
i=1

(α+)i +
n∑
i=1

(α−)i +
d+1∑
l=2

∑
{d1,... ,dn}∈�l

(
e+d1...dn

+ e−d1...dn

)
� 1,

Gd1...dn 
 0, ∀{d1, . . . , dn} ∈ �l, l = 0, . . . d − 1,
w � 0, α+ � 0, α− � 0,
e+
d1...dn

, e−
d1...dn

� 0, ∀{d1, . . . , dn} ∈ �l, l = 2, . . . , d + 1.



(24)

Note that the second, third and fourth set of constraints in (24) are specified to
ensure that the Hessian of the function giving the cut is negative semidefinite on
R
n+.

5. Convex quadratic cuts using nonsmooth objectives

In Section 3, we presented a method for generating valid convex quadratic inequal-
ities for MICP. For this purpose we used the Frobenius matrix norm in the objective
function. In the previous section the dual (21) of the cut generation problem (19)
is an ∞−norm projection problem. It is natural to ask whether it is possible to use
other matrix norms in the objective function of (9). In this section we show that
other matrix norms can be used instead of the Frobenius norm in the projection
problem, provided that certain assumptions are satisfied. In particular, we need that
Lagrange multipliers exist at the optimal solution found for the projection prob-
lem, and that the subgradient of the objective function satisfies certain additional
properties.

Let us consider the projection problem:

minimize ‖x − x̄‖ + ∥∥V − X̄ −ϒ∥∥
subject to (x, Vij , i, j = 1, . . . , n) ∈ M(C)

ϒ 	 0,


 (25)

where we follow the notation used for describing (9). The second term in the
objective function of (25) can now be any matrix norm. First we give sufficient
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conditions for a feasible solution to be optimal for (25). We rewrite (25) using
generic notation.

PROPOSITION 5.1. Let us consider the problem

minimize h(u, Y,ϒ)

subject to hi(u, Y ) � 0, i = 1, . . . , m̂,
(Au)j • u+

[
(AY )j

] • Y = bj , j = 1, . . . l̂,
Y,ϒ 	 0,


 (26)

The set of inequality and linear equality constraints in (26) represent the con-
straints defining M(C). The function h(u, Y,ϒ) is any convex function, m̂ is the
number of constraints, and Au,AY represent columns of equality constraint matrix
A corresponding to variables in u and Y, and (Au)j represent the j th row of Au
and

[
(AY )j

]
represent the j th row of AY written in matrix form. Assume that at a

feasible solution (u∗, Y ∗, ϒ∗) we have Lagrange multipliers (µ, π) satisfying

ξh(u
∗)+∑m̂

i=1 µiξhi (u
∗)+ ATu π = 0,

F ∗ ≡ [ξh(Y ∗)]+∑m̂
i=1 µi

[
ξhi (Y

∗)
]+∑l̂

j=1 πj
[
(AY )j

] 	 0,
E∗ ≡ − [ξh(ϒ∗)] 
 0, µi � 0, i = 1, . . . , m̂,
µihi(u

∗, Y ∗, ϒ∗) = 0, F ∗ • Y ∗ = 0, E∗ • ϒ∗ = 0,




(27)

where ξh(.), and ξhi (.) represent a subgradient of h(.) and hi(.) at (u∗, Y ∗, ϒ∗),
and the notation

[
ξhi ()

]
represent the () components of the subgradient vector

written as a matrix. Then, (u∗, Y ∗, ϒ∗) is an optimal solution.
Proof. Assume that we have a direction (du,DY ,Dϒ) such that h(u∗+du, Y ∗ +

DY ,ϒ
∗ + Dϒ) < h(u∗, Y ∗, ϒ∗), and (u∗ + du, Y ∗ + DY,ϒ∗ + Dϒ) is feasible.

Then, because of the convexity of h, we have h(u∗, Y ∗, ϒ∗) > h(u∗ + du, Y ∗ +
DY ,ϒ

∗ + Dϒ) � h(u∗, Y ∗, ϒ∗) + ξh(u∗)T du + [ξh(Y ∗)] • DY + [ξh(ϒ∗)] •Dϒ .
Hence,

0 > ξh(u
∗)T du +

[
ξh(Y

∗)
] •DY + [ξh(ϒ∗)

] •Dϒ. (28)

Similarly, for the constraints satisfying hi(u∗, Y ∗, ϒ∗) = 0, we have

0 � ξhi (u∗)T dv +
[
ξhi (Y

∗)
] •DY . (29)

Now by taking the inner product of first three sets of equations in (27) with (du, Y ∗+
DY ,ϒ

∗ +Dϒ), we have

0 � (Y ∗ +DY) • F ∗ − (ϒ∗ +Dϒ) • E∗ = DY • F ∗ −Dϒ •E∗,
where the inequality follows from the fact that for any symmetric positive semi-
definite matrices E and Y, E • Y � 0 and the equality uses complementarity
conditions. The above inequality contradicts with (28) and (29). �
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The next theorem shows that a valid convex quadratic inequality can be gener-
ated if the subgradient of the objective function satisfies some additional properties.
This theorem can be proved using arguments similar to those used in the proof of
Theorem 3.2.

THEOREM 5.2. Let (ξ ∗, E∗ ≡ [ξ(V ∗)], ξ(ϒ∗)) represent the subgradient of the
objective function of (25) used in verifying the optimality condition. Assume that
E∗ 
 0. In addition, assume that (ξ ∗, ξ(V ∗), ξ(ϒ∗)) satisfies conditions

[ξ(V ∗)]ij = −[ξ(ϒ∗)]ij , and E∗ • (V ∗ − X̄ − ϒ∗) > 0. (30)

Then,

ξ ∗ • x + E∗ •X � ξ ∗ • x∗ + E∗ • (V ∗ −ϒ∗) (31)

is a valid convex quadratic inequality that cuts away x̄. �
In Theorem 5.2 the assumption that E∗ 
 0 is satisfied from Proposition 5.1,

which assumes the existence of Lagrange multipliers at the optimal solution x∗.
The assumptions in (30) are satisfied in the two important cases where the objective
function is defined using 1-norm or ∞-norm by treating the matrix as a vector.

6. Convex polynomial cuts for MICP

The technique for generating convex polynomial cuts in the linear case can not be
used to generate such cuts for MICP. The reason is that we can no longer give the
projection cone explicitly, which was possible in the linear case. Our approach in
this section extends the approach for generating convex quadratic cuts in Section 3.
We define an appropriate projection problem, whose solution is used to generate a
polynomial cut. For this purpose, we consider sets generated by multiple applica-
tion of operator M(.). We need to introduce some additional notation to describe
our approach.

Let nl represent the number of variables used to represent Ml(C), l = 1,
. . . , d, d � p. Note the difference between nl and nj , where nj is n multiplied j
times. Let n0 = n.We use n new variable vectors of length nl−1 (total nl−1+nnl−1

variables) to represent Ml(C). We represent these vectors by vlj , j = 1, . . . , n.
The vector vl represents (vl1, . . . , v

l
n). By V lj1...jl+1

we represent the nl−1(jl+1 −
1) + nl−2 + ∑l−2

k=0 n
l−k−1(jl−k − 1) + j1 element of vl. Loosely speaking, this

element corresponds to variable product xj1xj2 . . . xjl+1 in the x-space. By V we
represent the vector of variables (V dj1...jl+1

, l = 1, . . . , d). By ψl we represent
(x, v1, . . . , vl).

For example, v1
j , j = 1, . . . , n, represent n vectors of length n introduced while

writing M1(C) ≡ M(C) in (5). Also, v1 = (v1
j , j = 1, . . . , n), ψ1 = (x, v1),

n1 = n + n2, and Vj1j2 is the (j2 − 1)n + j1th element of v1. Similarly, to write
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M2(C)we introduce n new variable vectors v2
j of length n+n2 each, v2 = (v2

j , j =
1, . . . , n), ψ2 = (x, v1, v2), n2 = n1 + nn1 = n + 2n2 + n3, and Vj1j2j3 is the
(j3 − 1)n1 + n0 + (j2 − 1)n+ j1th element of v2.

Let G1(ψ1) � 0 represent the set of constraints in M1(C), and more generally,
let Gl(ψl) � 0, represent the set of constraints giving Ml(C), l = 1, . . . , d. Here
we let G0(.) ≡ G(.). The set M2(C) is now written as follows:

M2(C) ≡



(x, v1, v2)

∣∣∣∣∣∣∣∣∣∣∣∣

Q(G1(ψ1 − v2
j
), 1− xj ) � 0, j = 1, . . . , p,

Q(G(v2
j ), xj ) � 0, j = 1, . . . , p,

(v2
j
)j = xj , j = 1, . . . p,

Q(v2
j , xj ) � 0, j = p + 1, . . . , n,

Vj1j2j3 = VP(j1j2j3), ∀P, j1 � j2 � j3 = 1, . . . , n



.

Note that we have not written the semidefinite constraint while writing M2(C),
however, semidefinite constraints are implicitly present in G1(.). The symmetry
constraints Vj1j2j3 = VP(j1j2j3) require variables to take the same value if the indices
of one can be obtained from other by a permutation. Here P represents a permuta-
tion of the argument index sets. More generally, the set Ml(C), l = 1, . . . d, is
written as

Ml(C) ≡

≡



(x, v1, . . . , vl)

∣∣∣∣∣∣∣∣∣∣∣∣

Q(Gl−1(ψl−1 − vl
j
), 1− xj ) � 0, j = 1, . . . , p,

Q(Gl−1(vl
j
), xj ) � 0, j = 1, . . . , p,

(vl
j
)j = xj , j = 1, . . . p,

Q(vl
j
, xj ) � 0, j = p + 1, . . . n,

Vj1...jl+1 = VP(j1...jl+1)
, ∀P, j1 � . . . � jl+1 = 1, . . . , n



.

(32)

The constraints written as equalities in (32) can be explicitly substituted to re-
duce the size of the problem, however, we retained them in (32) for notational
convenience. It can be shown that the projection of Ml(C) onto the x-space is
Nl(C).

We now introduce new variables which allow us to write the projection problem
in a way so that its relation is clear with the convex cut generation method described
in Section 4.2. For l = 1, . . . , d, let yd1...dn = Vj1...jl+1 , where dj is the number of
times subscript j repeats in Vj1...jl+1 . For example, y0...1...0...1...0 = Vj1j2 , where 1s in
the subscript of y are at j1 and j2 locations only. Note that y0...0 and y0...1...0 are not
defined. Also note that we can explicitly substitute variables y... in (32), however,
we will keep them in (33) for notational convenience. Corresponding to each yd1...dn

we introduce weights ρd1...dn > 0 and variables γd1...dn . These are used in ensuring
the convexity of generated polynomial cuts. The weights ρd1...dn are specified in
Theorem 6.2 below.

We now introduce additional notation to express the separation problem for
generating convex polynomial cuts as clearly as possible. By Xd1...dn we repres-
ent a n × n symmetric matrix whose st element is xd1 . . . xds+1 . . . xdt+1 . . . xdn ,
s = 1, . . . , n, s > t , t = 1, . . . , n. Similarly, by Yd1,... ,dn , Rd1,... ,dn , and ϒd1,... ,dn
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we represent a matrix whose st elements are yd1...ds+1...dt+1...dn , ρd1...ds+1...dt+1...dn ,
and γd1...ds+1...dt+1...dn , respectively. The diagonal elements (ss, s = 1, . . . , n) of
Xd1...dn , Yd1...dn , Rd1...dn , and ϒd1...dn are given by xd1 . . . xds+2 . . . xdn , yd1...ds+2...dn ,
ρd1...ds+2...dn , and γd1...ds+2...dn , respectively. We let X̄d1...dn be Xd1...dn evaluated at x̄.
Also we let Ed1...dn ≡ Rd1...dn ⊗

(
Yd1...dn − X̄d1...dn −ϒd1...dn

)
. The matrices Xd1...dn ,

X̄d1...dn , Yd1...dn , Rd1...dn , ϒd1...dn , and Ed1...dn are defined for {d1, . . . , dn} ∈ �l, l =
0, . . . d − 1. We use Y , ϒ and E to represent all the variables appearing in Yd1...dn ,
ϒd1...dn and Ed1...dn in a vector form.

Now we consider the following projection problem to generate d + 1 degree
polynomial cuts.

minimize h(x, Y, V,ϒ) ≡ 1
2

n∑
i=1

(xi − x̄i )2 + 1

2

d−1∑
l=0

∑
{d1,... ,dn}∈�l

∥∥Ed1...dn

∥∥2

F

subject to yd1...dn = Vj1...jl+1, {d1, . . . , dn} ∈ �l, l = 1, . . . d
(x, v1, . . . , vd) ∈ Md(C)

Rd1...dn ⊗ ϒd1...dn 	 0, {d1, . . . , dn} ∈ �l, l = 0, . . . , d − 1.




(33)

By (x∗, Y ∗, V ∗, ϒ∗) we represent an optimal solution of (33). Note that V ∗ can
be constructed from Y ∗ and vice-versa, and Y ∗ and ϒ∗ contain Y ∗d1...dn

and ϒ∗
d1...dn

,
{d1 . . . dn} ∈ �l , l = 0, . . . , d − 1, in a vector form. Let ξ ∗ ≡ (∇h(x, Y, V,ϒ))x∗
and Z∗ ≡ (∇h(x, Y, V,ϒ))Y ∗ . Note that (∇h(x, Y, V,ϒ))ϒ∗ = −Z∗, and Z∗ =
R ⊗ E∗, where E∗ is E evaluated at (x∗, Y ∗, V ∗, ϒ∗). The following lemma is a
generalization of Lemma 3.1.

LEMMA 6.1. LetE∗d1...dn
= Rd1...dn⊗

(
Y ∗d1...dn

− X̄d1...dn −ϒ∗
d1...dn

)
, {d1, . . . , dn} ∈

�l , l = 0, . . . d − 1. The matrices E∗d1...dn
are symmetric negative semidefinite.

Furthermore, if x̄ �∈ Nd(C), then the optimal objective value of (33) is positive.
Proof. We will follow arguments similar to those in the proof of Lemma 3.1.

Since E∗d1...dn
is a symmetric matrix there exist an orthogonal matrix Qd1...dn such

thatQTd1...dn
E∗d1...dn

Qd1...dn = .d1...dn ≡ diag(.1
d1...dn

, . . . .nd1...dn
),where.1

d1...dn
, . . .

.nd1...dn
are the eigenvalues of E∗d1...dn

. The orthogonality of Qd1...dn implies that
E∗d1...dn

= Qd1...dn.d1...dnQ
T
d1...dn

. Assume, without loss of generality, that the first
k � n eigen values of E∗d1...dn

are positive, i.e., .1
d1...dn

, . . . ,.kd1...dn
> 0. Now

construct symmetric matrix ϒ̂d1...dn ≡ ϒ∗
d1...dn

+
[
Qd1...dn.̂d1...dnQ

T
d1...dn

]
� Rd1...dn .

We can verify that ϒ̂d1...dn constructed in this way satisfies the constraint Rd1...dn ⊗
ϒd1...dn 	 0. Hence (x∗, Y ∗, V ∗, ϒ̂∗) is feasible for (33). Let Êd1...dn ≡ Rd1...dn ⊗
(Y ∗d1...dn

− X̄d1...dn +−ϒ̂∗
d1...dn

). Now,

‖Ê∗d1...dn
‖F = ‖E∗d1...dn

−Qd1...dn.̂d1...dnQ
T
d1...dn

‖F
= ‖Qd1...dn(.d1...dn − .̂d1...dn)Q

T
d1...dn

‖F < ‖E∗d1...dn
‖F .
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We have constructed a feasible solution with a smaller objective value, which is a
contradiction.

Since x̄ �∈ Nd(C), we do not have a (v1, . . . vd) so that (x̄, v1, . . . , vd) ∈
Md(C). Therefore, for any value of ϒ , (x̄, X̄+ϒ,V (X̄+ϒ),ϒ) is not a feasible
solution of (33). Here the notation V (X̄,ϒ) denotes that the value of variables in
V are constructed from those in Y to satisfy the equality constraints. Hence, the
objective value of (33) is positive. �

Following arguments similar to those used to get (10), we can show that the
inequality

ξ ∗ • x + Z∗ • Y � ξ ∗ • x∗ + Z∗ • (Y ∗ −ϒ∗) (34)

is a valid inequality for Md(C). The following theorem is a generalization of
Theorem 3.2 to the convex polynomial case.

THEOREM 6.2. Let x̄ �∈ Nd(C), and Z∗d1...dn
be defined as above. Define n × n

symmetric matrix Rd1...dn so that its st element is 1/(ds + 1)(dt + 1), if s �= t . The
diagonal element (ss, s = 1, . . . , n) of Rd1...dn is 1/(ds + 2)(ds + 1). Then, the
inequality

ξ ∗ • x +
d−1∑
l=0

∑
{d1...dn}∈�l

Z∗d1...dn
•Xd1...dn � ξ ∗ • x∗

+
d−1∑
l=0

∑
{d1...dn}∈�l

Z∗d1...dn
• (Y ∗d1...dn

−ϒ∗
d1...dn

)

(35)

is a valid convex polynomial inequality that cuts away x̄.
Proof. The inequality (35) can be rewritten as

ξ ∗ • x + Z∗ •X � ξ ∗ • x∗ + Z∗ • (Y ∗ −ϒ∗). (36)

If (36) is not valid then for some feasible solution x̂ of MICP,

ξ ∗ • x̂ + Z∗ • X̂ < ξ ∗ • x∗ + Z∗ • (Y ∗ −ϒ∗)

where X̂ is obtained by evaluating X at x̂.
By taking V lj1...jl+1

=∏l+1
k=1 x̂jk , j1, . . . jl+1 = 1, . . . , n, l = 1, . . . , d, yd1...dn =∏n

k=1 x̂
dk
k , andϒ = 0, we have a feasible solution of (33), which is violated by (34).

This is a contradiction. Now we show that (36) cuts away x̄. Let X̄ be X evaluated
at x̄. Now,

ξ ∗ • (x̄ − x∗)+ Z∗ • X̄ = −ξ ∗ • ξ ∗ + Z∗ • X̄
= −ξ ∗ • ξ ∗ + E∗ • (R ⊗ (Y ∗ −ϒ∗)− E∗)
< Z∗ • (Y ∗ −ϒ∗),
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where we have used Z∗ = R ⊗ E∗, and the last inequality follows by observing
that the optimal objective value of (33) is given by 1

2ξ
∗ • ξ ∗ + 1

2E
∗ • E∗, which is

positive from Lemma 6.1. By using the definition of Z∗ and R, and taking partial
derivatives of elements of Xd1...dn it can be verified that the Hessian matrix of (35)
is given by

d−1∑
l=1

∑
{d1...dn}∈�l

E∗d1...dn
.

From Lemma 6.1 this is a negative semidefinite matrix, hence (35) is a convex
inequality. �

By following the developments in Section 5, the methodology of this section
can also be developed for situations where more general norms functions are used
while defining the projection problem (33). We leave the details of this to the reader.

7. Conclusions

We have shown that by using appropriately defined projection problems it is pos-
sible to generate convex quadratic and convex polynomial cuts for MICP. These
are first such results in the context of 0–1 programs. With limited computational
effort, we have not found practical examples where these cuts benefit the branch-
and-cut procedure, therefore, our results remain theoretical. However, given the
nature of results, we think that such cuts could be valuable, particularly in the
context of general 0–1 convex programs. The main difficulty in testing our ideas
is that the existing state of the art optimization software available (for example,
from NEOS server www.ece.nwu.edu/OTC) is unable to solve the cut generation
sub-problems. We also tried a commercially available software package, and it was
also unable to produce satisfactory results. Typically the solvers either produce
infeasible solutions and claim them to be optimum, or the implemented optimiza-
tion algorithms fail. As a result we are unable to generate the correct subgradient
information needed to write the cut even in the quadratic case.

In summary, we conclude by saying that the use of nonlinear cuts provides a
new possible strategy for 0–1 convex programs. This paper has presented a basic
technique for how these cuts can be generated, however, computational testing is
needed to know the practical viability of our ideas.
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